top of page

Peer-reviewed journal publications

(Please click the titles to view the papers. * denotes equal contribution.)

36. Acoustic-feedback wavefront-adapted photoacoustic microscopy

Y. Shen*, J. Ma*, C. Hou*, J. Zhao, Y. Liu#, H.-C. Hsu, T. T. W. Wong, B.-O. Guan, S. Zhang#, and L. V. Wang#Optica 11, 214-221 (2024). # denotes corresponding authors.

35. Single-exposure ultrasound-modulated optical tomography with a quaternary phase encoded mask

J. Luo, D. Wu, Y. Liu#, Z. Li, and Y. Shen#Optics Letters 48, 2857-2860 (2023). # denotes corresponding authors.

34. Deep learning-enabled volumetric cone photoreceptor segmentation in adaptive optics optical coherence tomography images of normal and diseased eyes

S. Soltanian-Zadeh, Z. Liu, Y. Liu, A. Lassoued, C. A. Cukras, D. T. Miller, D. X. Hammer, and S. Farsiu, Biomedical Optics Express 14, 815-833 (2023).

33. High-speed single-exposure time-reversed ultrasonically encoded optical focusing against dynamic scattering

J. Luo, Y. Liu, D. Wu, X. Xu, L. Shao, Y. Feng, J. Pan, J. Zhao, Y. Shen, and Z. Li, Science Advances 8, eadd9158 (2022).

32. Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography

A. Lassoued, F. Zhang*, K. Kurokawa*, Y. Liu*, M. T. Bernucci*, J. A. Crowell, and D. T. Miller, Proceedings of the National Academy of Sciences (PNAS) 118, e2107444118 (2021).

31. Quantitative blood flow estimation in vivo by optical speckle image velocimetry

M. Qureshi, Y. Liu, K. D. Mac, M. Kim, A. M. Safi, and E. Chung, Optica 8, 1092-1101 (2021).

30. Self-fluence-compensated functional photoacoustic microscopy

J. Zhu, C. Liu, Y. Liu, J. Chen, Y. Zhang, K. Yao, and L. Wang, IEEE Transactions on Medical Imaging, 40 (12), 3856-3866 (2021).

29. An open-source, accurate, and iterative calibration method for liquid-crystal-based spatial light modulators

Y. Shen#, Z. Hu, D. Wu, C. MaY. Liu#, Optics Communications 495, 127108 (2021). # denotes corresponding authors.

28. Fluorescence imaging through dynamic scattering media with speckle-encoded ultrasound-modulated light correlation

H. Ruan*, Y. Liu*, J. Xu, Y. Huang, and C. Yang, Nature Photonics 14, 511-516 (2020).

Media coverage: 1. Caltech News; 2Nature Photonics News & Views by Prof. Allard P. Mosk, Nature Photonics 14, 466–467 (2020).

27. Fighting against fast speckle decorrelation for light focusing inside live tissue by photon frequency shifting

J. Yang, L. Li, J. Li, Z. Cheng, Y. Liu, and L. V. Wang, ACS Photonics 7, 837-844 (2020).

26. Investigating ultrasound–light interaction in scattering media

Y. Huang, M. Cua, J. Brake, Y. Liu, and C. Yang, Journal of Biomedical Optics 25, 025002 (2020).

25. Imaging through highly scattering human skulls with ultrasound-modulated optical tomography

Y. Liu*, R. Cao*, J. Xu, H. Ruan, and C. Yang, Optics Letters 45, 2973-2976 (2020).

Highlighted in OSA Spotlight on Optics by Prof. Emmanuel Bossy.

24. Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star

J. Yang*, L. Li*, A. A. Shemetov*, S. Lee, Y. Zhao, Y. Liu, Y. Shen, J. Li, Y. Oka, V. V. Verkhusha, and L. V. Wang, Science Advances 5, eaay1211 (2019).

23. Wavefront shaping with disorder-engineered metasurfaces

M. Jang*, Y. Horie*, A. Shibukawa*, J. Brake, Y. Liu, S. M. Kamali, A. Arbabi, H. Ruan, A. Faraon, and C. Yang, Nature Photonics 

12(2), 84-90 (2018).

22. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses

Y. Liu*, Y. Shen*, H. Ruan, F. Brodie, T. T. W. Wong, C. Yang, and L. V. Wang, Journal of Biomedical Optics 23(1), 010501 (2018).

21. Deep-tissue optical focusing and optogenetic modulation with time-reversed ultrasonically encoded light

H. Ruan*, J. Brake*, J. Robinson, Y. Liu, M. Jang, C. Xiao, C. Zhou, V. Gradinaru, and C. Yang, Science Advances 3(12), (2017).

20. High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping

A. S. Hemphill, Y. Shen, Y. Liu, and L. V. Wang, Applied Physics Letters 111(22), 221109 (2017).

19. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation

Y. Liu, C. Ma, Y. Shen, J. Shi and L. V. Wang, Optica 4(2), 280-288 (2017).

18. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation

J. Yang*, Y. Shen*, Y. Liu, A. S. Hemphill, and L. V. Wang, Applied Physics Letters 111(20),201108 (2017).

17. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping

H. Ruan, T. Haber, Y. Liu, J. Brake, J. Kim, J. M. Berlin and C. Yang, Optica 4(11), 1337-1343 (2017).

16. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media

Y. Shen*, Y. Liu*, C. Ma, and L. V. Wang, Optica 4, 97-102 (2017).

15. In vivo study of optical speckle decorrelation time across depths in the mouse brain

M. M. Qureshi*, J. Brake*, H. J. Jeon, H. Ruan, Y. Liu, A. M. Safi, T. J. Eom, C. Yang and E. Chung, Biomedical Optics Express

8(11), 4855-4864 (2017).

14. Focusing light through scattering media by transmission matrix inversion

J. Xu, H. Ruan, Y. Liu, H. Zhou and C. Yang, Optics Express 25(22), 27234-27246 (2017).

13. Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media

Y. Liu, Y. Shen, C. Ma, J. Shi, and L. V. Wang, Applied Physics Letters 108, 231106 (2016).

12. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 centimeters in thickness with digital optical phase conjugation

Y. Shen*, Y. Liu*, C. Ma, and L. V. Wang, Journal of Biomedical Optics 21(8), 085001 (2016).

11. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media

Y. Liu, C. Ma, Y. Shen, and L. V. Wang, Optics Letters 41, 1321-1324 (2016).

10. Focusing light through scattering media by full-polarization digital optical phase conjugation

Y. Shen*, Y. Liu*, C. Ma, and L. V. Wang, Optics Letters 41, 1130-1133 (2016).

9. Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation

C. Ma*, F. Zhou*, Y. Liu, and L. V. Wang, Optica 2, 869-876 (2015).

8. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light

Y. Liu*, P. Lai*, C. Ma, X. Xu, A. Grabar, and L. V. Wang, Nature Communications 6, 5904 (2015).

Reported in Nature, “Optics: Super vision”, Nature, 518(7538):158-160 (2015).

7. Photobleaching imprinting microscopy: seeing clearer and deeper

L. Gao, A. Garcia, Y. Liu, C. Li, and L. V. Wang, Journal of Cell Science 127(2), 288-294 (2014).

6. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media

C. Ma, X. Xu, Y. Liu, and L. V. Wang, Nature Photonics 8(12), 931-936 (2014).

5. Optical sectioning by wide-field photobleaching imprinting microscopy

C. Li*, L. Gao*, Y. Liu, and L. V. Wang, Applied Physics Letters 103(18) (2013).

4. Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals

J. Xia, A. Danielli, Y. Liu, L. Wang, K. Maslov, and L. V. Wang, Optics Letters 38(15), 2800-2803 (2013).

3. Single-cell photoacoustic thermometry

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V. Wang, Journal of Biomedical Optics 18(2), 026003 (2013).

2. Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens-Fresnel theorem

M. R. N. Avanaki, A. G. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, Applied Optics 52(8), 1574-1580 (2013).

1. Effects of light scattering on optical-resolution photoacoustic microscopy

Y. Liu, C. Zhang, and L. V. Wang, Journal of Biomedical Optics 17(12), 126014 (2012).

My Google Scholar

bottom of page